0.0
NA
CVE-2026-23110
scsi: core: Wake up the error handler when final completions race against each other
Description

In the Linux kernel, the following vulnerability has been resolved: scsi: core: Wake up the error handler when final completions race against each other The fragile ordering between marking commands completed or failed so that the error handler only wakes when the last running command completes or times out has race conditions. These race conditions can cause the SCSI layer to fail to wake the error handler, leaving I/O through the SCSI host stuck as the error state cannot advance. First, there is an memory ordering issue within scsi_dec_host_busy(). The write which clears SCMD_STATE_INFLIGHT may be reordered with reads counting in scsi_host_busy(). While the local CPU will see its own write, reordering can allow other CPUs in scsi_dec_host_busy() or scsi_eh_inc_host_failed() to see a raised busy count, causing no CPU to see a host busy equal to the host_failed count. This race condition can be prevented with a memory barrier on the error path to force the write to be visible before counting host busy commands. Second, there is a general ordering issue with scsi_eh_inc_host_failed(). By counting busy commands before incrementing host_failed, it can race with a final command in scsi_dec_host_busy(), such that scsi_dec_host_busy() does not see host_failed incremented but scsi_eh_inc_host_failed() counts busy commands before SCMD_STATE_INFLIGHT is cleared by scsi_dec_host_busy(), resulting in neither waking the error handler task. This needs the call to scsi_host_busy() to be moved after host_failed is incremented to close the race condition.

INFO

Published Date :

Feb. 4, 2026, 5:16 p.m.

Last Modified :

Feb. 4, 2026, 5:16 p.m.

Remotely Exploit :

No

Source :

416baaa9-dc9f-4396-8d5f-8c081fb06d67
Affected Products

The following products are affected by CVE-2026-23110 vulnerability. Even if cvefeed.io is aware of the exact versions of the products that are affected, the information is not represented in the table below.

No affected product recoded yet

Solution
Resolve race conditions in SCSI error handling by enforcing memory ordering.
  • Apply kernel patch addressing SCSI error handler races.
  • Ensure memory barriers are used on the error path.
  • Move scsi_host_busy() call after host_failed increment.
References to Advisories, Solutions, and Tools
CWE - Common Weakness Enumeration

While CVE identifies specific instances of vulnerabilities, CWE categorizes the common flaws or weaknesses that can lead to vulnerabilities. CVE-2026-23110 is associated with the following CWEs:

Common Attack Pattern Enumeration and Classification (CAPEC)

Common Attack Pattern Enumeration and Classification (CAPEC) stores attack patterns, which are descriptions of the common attributes and approaches employed by adversaries to exploit the CVE-2026-23110 weaknesses.

We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).

Results are limited to the first 15 repositories due to potential performance issues.

The following list is the news that have been mention CVE-2026-23110 vulnerability anywhere in the article.

The following table lists the changes that have been made to the CVE-2026-23110 vulnerability over time.

Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.

  • New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67

    Feb. 04, 2026

    Action Type Old Value New Value
    Added Description In the Linux kernel, the following vulnerability has been resolved: scsi: core: Wake up the error handler when final completions race against each other The fragile ordering between marking commands completed or failed so that the error handler only wakes when the last running command completes or times out has race conditions. These race conditions can cause the SCSI layer to fail to wake the error handler, leaving I/O through the SCSI host stuck as the error state cannot advance. First, there is an memory ordering issue within scsi_dec_host_busy(). The write which clears SCMD_STATE_INFLIGHT may be reordered with reads counting in scsi_host_busy(). While the local CPU will see its own write, reordering can allow other CPUs in scsi_dec_host_busy() or scsi_eh_inc_host_failed() to see a raised busy count, causing no CPU to see a host busy equal to the host_failed count. This race condition can be prevented with a memory barrier on the error path to force the write to be visible before counting host busy commands. Second, there is a general ordering issue with scsi_eh_inc_host_failed(). By counting busy commands before incrementing host_failed, it can race with a final command in scsi_dec_host_busy(), such that scsi_dec_host_busy() does not see host_failed incremented but scsi_eh_inc_host_failed() counts busy commands before SCMD_STATE_INFLIGHT is cleared by scsi_dec_host_busy(), resulting in neither waking the error handler task. This needs the call to scsi_host_busy() to be moved after host_failed is incremented to close the race condition.
    Added Reference https://git.kernel.org/stable/c/219f009ebfd1ef3970888ee9eef4c8a06357f862
    Added Reference https://git.kernel.org/stable/c/64ae21b9c4f0c7e60cf47a53fa7ab68852079ef0
    Added Reference https://git.kernel.org/stable/c/9fdc6f28d5e81350ab1d2cac8389062bd09e61e1
    Added Reference https://git.kernel.org/stable/c/fe2f8ad6f0999db3b318359a01ee0108c703a8c3
EPSS is a daily estimate of the probability of exploitation activity being observed over the next 30 days. Following chart shows the EPSS score history of the vulnerability.
Vulnerability Scoring Details
No CVSS metrics available for this vulnerability.